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Electronic structure in gapped graphene with a Coulomb potential
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In this paper, we numerically study bound electron states induced by long-range Coulomb impurities in
gapped graphene and quasibound states in the supercritical region based on the lattice model. We present a
detailed comparison between our numerical calculations and the prediction of quantum electrodynamics
2+ 1(QED) continuum model. Furthermore, the supercritical charge has been determined by both the lattice
model and the continuum model. The numerical results show that the behavior of quasibound state is consistent

with the prediction using Fano’s formalism.
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I. INTRODUCTION

Graphene, a two-dimensional (2D) hexagonal lattice of
carbon atoms, exhibits a special electronic dispersion rela-
tion that can be described by electrons behaving as massless
relativistic Dirac fermions.'=> This description leads to many
unconventional phenomena, such as minimal conductivity,“*5
the Klein paradox,® and the Vaselago lensing effect.” The
special feature of the large “fine structural constant” in
graphene not only provides an exciting platform to validate
some predictions of quantum electrodynamics (QED) in the
strong field but also provides an interesting “strong cou-
pling” 2+1 QED model.?

Recently, it was found that a potential induced by sub-
strate can break the chiral symmetry of the massless Dirac
equation and generate a gap in the graphene electron
spectrum.” The gap then suggests that the motion of elec-
trons can be described by the two-dimensional massive Dirac
equations. In this paper, we will investigate the electronic
structure of gapped graphene with Coulomb-charged impuri-
ties because these impurities induce important changes in the
electronic structure.'%'* It was expected that Coulomb-
charged impurities in gapped graphene behave the same as
heavy atoms in QED theory.

We expect that bound states be induced inside the gap
depending on the charge, Z, of the impurity. Moreover, when
the charge surpasses a supercritical number, Z,, quasibound
states can be generated. For the bound state, when its energy
is above the midgap, we can obtain its eigenfunction using
the Dirac equation with pure Coulomb potential in a con-
tinuum model. On the other hand, when its energy is below
the midgap, the continuum model cannot be used due to the
singularity of the pure Coulomb potential near r~ 0. Using
the approach similar to those in QED to treat the finite spatial
extension of the nuclear charge, we adopt an approximate
method to remove the singularity.!> Indeed, when one uses
continuum model to describes the behavior of electrons in
graphene, how to choose a suitable boundary condition at
r~0 remains an open question. For example, Ref. 16 chose
a “zigzag edge” boundary condition to describe the vacuum
polarization in gapless graphene, but Ref. 17 used an “infi-
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nite mass” boundary condition. However, these complica-
tions in the continuum model can be avoided if we use the
tight-binding (TB) approach that is a lattice model. In TB
model, there is an intrinsic scale set by the lattice cutoff.

In this paper, a large scale numerical calculation based on
the Lanczos method!® is used to investigate the local density
of states (LDOS) in the lattice model. By monitoring the
evolution of LDOS in the gap, we can determine the rela-
tionship between supercritical charge Z. and the gap width
(M). We also choose regularized Coulomb potential
(V=—ZRfa, R#0 for r<R, and V=—27a) to derive an exact
expression for the Z. in the continuum model. A detailed
comparison of the numerical results with the exact expres-
sion is presented. Moreover, we investigate the properties of
quasibound states in supercritical regime as the Coulomb
potential Z becomes greater than supercritical charge Z,. It is
found that the properties of those quasibound states can be
well described by using Fano’s formalism.

II. LATTICE MODEL AND CONTINUUM MODEL

In the following, we consider a single attractive Coulomb
impurity placed at the center of a honeycomb lattice in a
graphene sheet. The corresponding Hamiltonian in the tight-
binding form is

H=- I(E a;‘bj'i' HC) +M2 (a;ai - blTbl)
ij i

Ze? a:ai b;b,-
T\ At ) W)

1 1

where r=2.7 eV is the hopping energy between the nearest
neighboring atoms. The operators a'(a) and b'(b) denote
creation (annihilation) of an electron on sublattice A and sub-
lattice B, respectively. The first term of the Hamiltonian de-
scribes the hopping between the nearest neighboring atoms.
The second term is a mass term arising from an on-site en-
ergy difference between sublattices A and B. The parameter
M appears as the mass (or the gap) of the Dirac fermions.
This mass term naturally opens a gap of size 2M in the band
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spectrum. Many conditions can lead to a band gap within
graphene. For instance, Ref. 9 reports that the SiC substrate
can open a gap of ~0.26 eV in a single-layer graphene,
which is consistent with the calculation based on the first
principles.'® In our calculations, we select M from 0.05¢ (or
0.13 eV) to 0.10¢ (or 0.27 eV). Z is the impurity strength and
¢ is the effective dielectric constant. When the energy level is
close to the Dirac point, the Hamiltonian in gapped graphene
can be approximated by a continuum model with pure Cou-
lomb potential: H=ﬁvF(—ia'1r7x—ia'2(9y—Z—:“)+Mcr35 where
01,3 are the Pauli matrices. We can consider a:s;i_v,: as the
“fine-structure constant” in graphene. vF:%ta is the Fermi
velocity of graphene and a=1.42 A. M is the mass of the
Dirac fermion. Since v is sufficiently small compared with
the velocity of light in the QED theory, @ becomes large. The
large fine-structure constant value in graphene leads to the
investigation of the perturbation expansion.

III. BOUND STATES ABOVE THE MIDDLE GAP

In the continuum model, the eigenfunction of the Hamil-
ton operator with a pure Coulomb potential can be described
by the confluent hypergeometric function.'®?® The regulari-
ties at r— 0 and r— o require that the confluent hypergeo-
metric functions reduce to polynomials at the same time.
As a result, energy of the bound state within the gap 0<E
<M is given by

M sgn(Za)

E,j=—fF—, (2)
. )
+
(n+7v)?
where  y=\j>-(Za)>. Here, n=0,1,2,... and j
=1/2,3/2,.... j is the isospin-orbital momentum number.?’

We call the region where vy is real for all angular momentum
channels the nonsupercritical region. We now discuss the
variation in the bound-state energy above the midgap as a
function of the charge Z. From Eq. (2), we see that the en-
ergy of the bound state above the midgap is proportional to
the gap width, with the lowest bound state (j=1/2) reaching
the midgap (E=0.0 eV) at a critical value Za=j=1/2. For a
general j, when the charge Z exceeds j/ @, y becomes imagi-
nary and the solutions of the continuum model with pure
Coulomb potential break down. Hence, no bound states exist
below the middle of the gap according to the continuum
model with a pure Coulomb potential. However, this artifact
can be remedied by removing the singular behavior of the
pure Coulomb potential.

We show the numerical result of the LDOS spectrum for
the bound state above the midgap in Fig. 1. The calculation
uses the Lanczos recursive method?! in the lattice model. In
Figs. 1(a)-1(c), we fix the impurity strength at Za=0.4 and
vary the gap width (M). The lowest bound states (=0 and
j=1/2) in the gap can be clearly resolved based on the
LDOS spectrum. The other bound states are all very close to
the edge of the positive-energy continuum and are not clearly
distinguishable from the LDOS spectrum. The variation in
the energy of the lowest bound state with gap width is shown
in Fig. 1(d), where the dotted line corresponds to our numeri-
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FIG. 1. (Color online) (a)—(c) describe LDOS of the nearest site
from the Coulomb impurity with different gaps. (d) shows the rela-
tionship between the energy of bound states and the gap when Za
=0.4. The line is the theoretical prediction for Za=0.4 and j=1/2.
(e)—(g) describe the LDOS of the nearest neighbor with different
Coulomb charge values at M=0.05z. (h) shows the relationship be-
tween the energy of bound states and the Coulomb charge values at
M =0.05¢. The black line is the theoretical prediction.

cal simulations in the lattice model. We can compare our
numerical results with the predictions of Eq. (2), which is
based on the continuum model. The deviation is small at
small gap width and becomes larger for large M.

In Figs. 1(e)-1(g), we show the variation in the LDOS
spectrum of the bound states with different impurity strength,
Za, for fixed gap width at M =0.05¢. As expected, the peak of
the LDOS corresponding to the lowest bound state ap-
proaches the midgap as Za increases. The variation in the
energy of the lowest bound state as a function of Coulomb
charge is shown in Fig. 1(h). The dotted line gives the result
of our numerical simulations, and the fitting curve is plotted
using the continuum model. The agreement is again good for
small Za. We can see from Fig. 1(h) that the Za needs to be
smaller than 1/2 if the energy of the lowest bound state is
above the midgap.

The effect of Coulomb charge on the energy continuum of
our gapped graphene is shown in Fig. 2(a). For gapless
graphene, our spectrum is qualitatively similar to the spec-
trum in Ref. 17, where the bound states at E>3.0¢, and the
strong renormalization of the van Hove singularities are
mentioned. The major difference shown in our simulations is
the bound state in the gap and the dramatic changes in the
LDOS near the boundary of the positive continuum when the
bound state touches the midgap.

IV. BOUND STATES BELOW THE MIDDLE GAP

The continuum model of the Dirac equation with the pure
Coulomb potential cannot provide the solutions for bound
states below the midgap unless suitable boundary conditions
are introduced. From our previous discussion, there exists a
critical value (Za=1/2) when the lowest bound state touches
the midgap. If we use the lattice model, however, we can still
obtain the bound states as they gradually enter the energy
region below the midgap as Za=1/2 increases beyond 1/2.
Here we define in the lattice model a critical value Zy« that
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FIG. 2. (Color online) (a) shows the LDOS of the nearest neigh-
boring atoms with different Zae when the gap M is set to be 0.05¢.
(b) enlarges the LDOS region as the energy scale M <E<r ap-
proaches the midgap. (c)—(e) describe the lowest bound state in the
gap for Za=0.55, 0.60, and 0.65, respectively. (f) shows the rela-
tionship between critical charge Zyar and gap width M.

corresponds to the energy of the lowest bound state touching
the midgap. Near the midgap, we observe some significant
change in the LDOS spectrum simulation.

Figure 2(a) shows the LDOS when the bound states enter
the region below the midgap for a fixed gap width at M
=0.05¢. These bound states move away from the midgap as
Za increases. The relationship between the critical charge
Zya and the gap width M is numerically calculated in the
lattice model and is shown in Fig. 2(f). Note that this critical
value Zya depends on the gap width in our lattice model. For
example, the critical value Zya is about 0.6 when the gap
width is M=0.05¢. (Note that this is different from 1/2 pre-
dicted from the continuum model without regularizing the
Coulomb potential.??) If we carefully look at Fig. 2(b), the
resonance peak of the LDOS spectrum in the positive-energy
continuum moves toward the edge of the positive continuum
as Za increases. When Za=Z,«, the peak touches the edge.
If Za increases further, the peak does not move due to the
existence of the gap, but the height of the resonance peak
increases. These results are similar to those in gapless
graphene. We, therefore, believe that the critical value is re-
lated to the mechanism that produces the resonance peak at
the edge of the positive continuum.

V. SUPERCRITICAL REGION AND THE DECAY OF
VACUUM

As we increase Za even more, the energy of the lowest
bound state approaches the edge of the band gap (E=-M).
When Ze is larger than the critical value Z ., the energy of
the bound state will sink into the negative spectrum. In this
case, the bound state changes its characteristics and becomes
a quasibound state. As predicted by the QED theory,'3 the
neutral vacuum will decay into a charged vacuum. The pro-
cesses of this change is called the decay of vacuum. Here we
calculate the supercritical charge Z.« in gapped graphene in
the continuum model as well as the lattice model. First of all,
in the continuum model, one needs to remove the singularity
of the pure Coulomb potential to determine this critical
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FIG. 3. (Color online) (a) shows the evolving bound states near
E=-M when Za<Z.a. We can observe that LDOS on the bound
states becomes larger as Za increases. (b) describes the evolving
resonances near E=—M when Za>Z .. The arrow points toward
the edge of the gap E=—M. Inset (c) shows the relationship between
Z.a and gap width M. (d) shows the relationship between the po-
sition of resonance E, and Za. (e) shows the relationship between
the width of resonance I' and Za.

charge. A simple choice is that the potential takes the form
V=—%a, R#0 for r<R, and V=—ZTD‘ otherwise. On the edge
of the overcritical regime, the Dirac wave function can be
solved at the point E=—M analytically. Hence, the supercriti-
cal charge Z.« for the lowest bound state can be determined
through the boundary condition at r=R (Refs. 15 and 23):

]l(an) _ 1 |: _ Kt’v(pc):|
Iza) 2zl K p0 |

where p.=V8MRZ.a and v=2\(Z.a)*—j>. J/(x) is the Bessel
function of the first kind and K,(x) is a modified Bessel
function. This is a transcendental equation for Za and the
numerical result gives Z.a=0.78 at MR=0.02. If the gap
width is set to be M =0.05¢, the corresponding R is approxi-
mately 0.6a.

Next, we consider the lattice model. Figure 3(a) shows the
numerical results when the lowest bound state enters the
negative-energy continuum. The results indicate that the su-
percritical charge is about Z.a=0.756 when M =0.05z. Inset
of Fig. 3(c) reflects the relationship between Z,« and the gap
width M when R is set at 0.6a. The square dots represent the
numerical results based on the lattice model. The fitting line
implies that Z.« depends linearly on the gap width M, which
satisfies the results derived from the aforementioned tran-
scendental Eq. (4) in the region 0.05: <M < 0.10z. We would
like to point out that the relationship between Z.a and M
exhibits a logarithmic singularity when M ~0, and we have
also observed this phenomena as predicted in Ref. 24. How-
ever, in this paper, our calculation is in region 0.05¢<M
<0.107 (or 0.13<M <0.26 eV) which is consistent with the
experiment report.”

If Za>Z «, the lowest bound state enters the negative-
energy continuum and becomes a resonant state. We see this
trend from the LDOS spectrum shown in Fig. 3(b), where

3)
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even the second lowest bound state can be observed. How-
ever, the LDOS of quasibound states in the supercritical re-
gion decreases as Z« increases and the width of the quasi-
bound state increases with Za as well. From our numerical
results, we find that the position of the resonance peak
E.=—M+AE depends linearly on additional Coulomb charge
8Za=Za-Z.a, while the width of the quasibound state (I")
increases quadratically with additional Coulomb charge dZa.
These observations are qualitatively consistent with the pre-
diction of 3+1 QED based on Fano’s formalism used to
describe the resonances.?> The system at the diving point is
characterized by a Hamiltonian Hy(Za=Z.«). H, has one
discrete eigenstate |¢,) with energy E,=—M. Meanwhile H,,
has a continuous spectrum when E<-M, that is Ho|ig)
=E|). If the Coulomb impurity charge is larger than Z,.«,
we consider V=(Za-Z,a)/r=35,,/r as a small parameter.
Therefore, a wave function satisfied the equation H|yg)
=E|xg) in the supercritical regime can be approximately ex-
panded as>

|XE>=G(E)|¢0>+fdE'bE'(E)|¢E'>~

Here, we assume the function is spanned by the nonper-
turbation functions |¢) and |i;) (this assumption is correct
when the V is weak enough). Our discussion focuses on the
edge of the overcritical regime. Our calculation revises the
result in Refs. 25 and 26:

e
“ " (E-Ey-AE)?+T%4°

where AE=8,,{o|1/7|by) and =27V}
=27(8,,) X @g|1/7| ). On the edge of the overcritical re-
gime, the main term contributed to LDOS N(e,r) is'®

N(er) = 2 [rlxp)* de— E) = |a(e)[(rl ¢o)]” = lae)*.
E

(4)

As a result, the resonance energy E,=Ey+AE dives linearly
with Coulomb charge and the resonance width I" increases
quadratically with the Coulomb charge.

Some gedanken experiments were proposed to test the
interesting physical processes related to the supercritical
vacuum.!® For example, the dependence of the features of
the spectrum of the emitted positron on the “critical dura-
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tion” reflects the decay of the supercritical vacuum. Unfor-
tunately, there exist many difficulties in performing this ex-
periment in 3+1 QED since the Compton wavelength is
very short (0.0004 nm) and fine-structure constant is 1/137.
One can expect that the interesting physical processes pre-
dicted in QED may be performed in gapped graphene since
the fine-structure constant and the corresponding “Compton
wavelength \,=AV;/M” in gapped graphene is sufficiently
large compared with those in QED.

VI. SUMMARY

We have computed numerically the LDOS spectrum using
the lattice model for gapped graphene with Coulomb impu-
rities. The results have been compared with the continuum
model with pure Coulomb potential. We find that the numeri-
cal results can extend the spectrum from the positive to nega-
tive spectrum. We also find two critical impurity strength,
Zya for the lowest bound state touching the midgap (E=0)
and Z.a for the entrance to the supercritical region. When
Za>Z.«a, the lowest bound state enters the negative-energy
continuum and becomes a resonant state. Our numerical
work shows that these critical values monotonically increase
with the gap width M. The width of the quasibound state is
explained by Fano’s formalism. The many-body effects, such
as screening of impurities and renormalization of the
gap,?”?8 are under study. We hope our calculations contribute
to the future experiment designs.

Note added. Recently, we became aware of Ref. 24, which
has some overlap with this paper.
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